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l. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis
[15] in order to unify continuous and discrete analysis. The theory of dynamic equations not only unifies the theories of
differential equations and difference equations, but also it extends these classical cases to cases in between, e.g., to so-called
g-difference equations. Since then several authors have expounded on various aspects of this new theory, see the survey
paper by Agarwal et al. [2] and the references cited therein.

Many other interesting time scales exist, and they give rise to many applications, among them the study of population
dynamic models (see [8]). A book on the subject of time scales by Bohner and Petreson [5] summarizes and organizes much
of the time scales calculus (see also [4]).

The study of rational dynamic equations on time scales goes to back to Elzeiny [13].

For the notions used below we refer the reader to [5] and to the following a short introduction to the time scale calculus.

Definition 1.1: A time scale is an arbitrary nonempty closed subset of the real numbers R . Thus R,Z,N,Ny, i.e., the

real numbers, the integers, the natural numbers, and the nonnegative integers are examples of time scales, as are
[0,1]U2,3], [0,1]] UN, and the Cantor set, while Q, R\Q, C,(0,1), i. e., the rational numbers, the irrational

numbers, the complex numbers, and the open interval between 0 and 1, are not time scales. Throughout this paper, a time
scale is denoted by the symbol T and has the topology that it inherits from the real numbers with the standard topology.

To reference points in the set T, the forward and backward jump operators are defined.

Definition 1.2: For t €T, the forward operator o : T — T is defined by
ot)=inf{seT :s>t},

and backward operator p:T — T is defined by
pt)=sup{seT:s<t}

If T hasamaximum t* and a minimum t*, then
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ot’)=t", and p(t*) =t". When o(t) #t, thent is called right scattered. When p(t) #t,
then t is called left scattered.

Points t such that
pt)<t=<o(t), p(t) <t=supT, or o(t) =t =infT,
are called isolated points. If a time scale consists of only isolated points, then it is an isolated (discrete) time scale. Also, if

t<supT and o(t) =t, thent is called right-dense, and ift>~inf T and p(t) =t, then t is called left-dense.
Points t that are either left-dense or right-dense are called dense.

Finally, the graininess operator «:T —[0,0) is defined by u(t) = o(t) -t
andif f:T — R isafunction, then the function f? :T — R is defined by
fo@t)=f(ot)) forallteT,

i.e, f?=foo isthecomposition function of f with o.

Example 1.1: Let us briefly consider the two examples T =R and T =Z.

(i) If T =R, then we have forany t e R, o(t) =inf{s e R : s >t} = inf(t, ) =t,
and similarly o(t) =t. Hence every point t € R is left-dense and right-dense.

The graininess operator =0 forall t e R.

(i) If T =7, then we have for any t € Z

ot)=inf{seZ.s>t}=inf{t+1Lt+2,...}=t+1 and similarly p(t) =t—1. Hence, every pointt €Z is left-
scattered and right-scattered. The graininess operator 1 =1 for all t e Z.

Example 1.2: Consider the time scale T =N2 ={n”*:neN_}. Then, we have
o(n®)=(n+1)?, p(n*)=(n-2)?% and u(n’)=2n+1 for ne N,. Thus,
o(t)=(t+1)%, p(t)=(t-D°, and p(t) =2+t +1.

Example 1.3: Let T=7Z/4={k/4:k €Z}. Then, we have forteT .
ot)=inf{seT:s>t}=inf{t+n/4:neN}=t+1/4, and p(t)=t—h/4.
Hence, every point t € T isisolated and u(t) =o(t)—t=t+1/4—-t=1/4 for teT,

so that 4 in this example is constant.

Example 1.4: Consider the time scale T =2", we get o(t) =2t, p(t) :%, and u(t)=t forteT.

Continuity on time scales is defined in the following manner.

Definition 1.3: Assume f : T — R isafunctionandlet t T . If tis an isolated point, then we define

lim £ (s) = £ ()
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and we say T is continuous at t. When t is not isolated point, then when we write

lim f(s) =L,

st

it is understood that S approaches t in the time scale (S€T, S#t). Wesay f is continuous on T. provided
limf(s)=f(t) forallteT.

st

In particular, we have that any function defined on an isolated time scale (since all of its points are isolated points) is
continuous. We say f :[a,b], =& R is continuous provided f is continuous at each point in (&,b);, f is left
continuous at @, and f isright continuous at b .

In the time scale calculus, the functions are right-dense continuous which we now define.

Definition 1.4: A function f :T — R is called right-dense continuous or briefly rd-continuous provided it is continuous at
right-dense points in T. and its left-sided limits exist (finite) at left-dense points in T.. The set of rd-continuous functions
f :T — R will be denoted in this paperby C, =C,(T)=C,(T,R)

In the next theorem we see that the jump operator is rd-continuous.

Theorem 1.1 (Bohner et al. [5]): The forward operator o: T — T is increasing, rd-continuous, and

o(t)>t for all teT,

and the jump operator is discontinuous at points which are left-dense and right-scattered.

Remark 1.1: The graininess function z2:T —[0,0) is rd-continuous and 4 is discontinuous at points in T that are both
left-dense and right-scattered.

When T =7, the rational dynamic equation on discrete time scales
ax(t) —bx(p(t))
c+(X(p(t))"

where a,b,c >0 and m=>1. becomes the recursive sequence

(o () =

el R (L.1)
C+X._;

n+1

where a,b,c>0and m>1..

Now, the difference equations (as well as differential equations and delay differential equations) model various diverse
phenomena in biology, ecology, physiology, physics, engineering and economics, etc.[20]. The study of nonlinear difference
equations is of paramount importance not only in their own right but in understanding the behavior of their differential
counterparts.

There is a class of nonlinear difference equations, known as the rational difference equations, each of which consists of the
ratio of two polynomials in the sequence terms. There has been a lot of work concerning the global asymptotic behavior of
solutions of rational difference equations [1, 3, 6, 7, 9- 12, 14, 16, 18, 19, 21-26].

This paper addresses, the global stability, periodicity character and boundedness of the solutions of the rational dynamic
equation on discrete time scales

_ax(t) - bx(p(t)
o=y T ¢2)
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where a, b,c >0 and m>1.
When T =7 and m=1, our equation reduces to equation which examined by Yang et al. [24].

Here, we recall some notations and results which will be useful in our investigation.

Let | be some interval of real numbers and let f be a continuous function defined onl x 1. Then, for initial

conditions X(o(t,)), X(t,) € | , it is easy to see that the dynamic equation on discrete time scales
x(o(t)) = F(x(®). x(p(1))), tT, 1.3)
has a unique solution {X(t) :t € T}, which is called a recursive sequence on time scales.
Definition 1.5: A point @ is called an equilibrium point of equation (1.3) if
o= f(o,w).
Thatis, X(t) =@ for t €T , isasolution of equation (1.3), or equivalently, @ is a fixed point of f .

Assume @ is an equilibrium point of equation (1.3) and U =—f,, (@, w), and v=—1, ., (@, @) . Then the linearized

equation associated with equation (1.3) about the equilibrium point @ is
Z, TUZ +VZ,) =0. (1.4)
The characteristic equation associated with equation (1.4) is
A2 +ud+v=0. (1.5)
Theorem 1.2 (Linearized stability theorem [17]):

@ If Julx1+vand v<1, then w is locally asymptotically stable.
(2)If |ul<|1+v]|and |v|<1, then w isarepeller.

(3) If |u|-|1+v|and u® > 4v, then w is asaddle point.

(4)If |ul=1+v], then @ is anon—hyperbolic point.

Definition 1.6: We say that a solution {X(t) :t € T} of equation (1.3) is bounded if

| x(t)|< A for all teT.
Definition 1.7: (a) A solution {X(t) :t € T} of equation (1.2) is said to be periodic with period v if

x(t+v)=x(t) for all teT. (L.6)

(b) A solution {X(t) :t € T} of equation (1.3) is said to be periodic with prime period v, or v -cycle if it is periodic with
period U and v is the least positive integer for which (1.6) holds.

Definition 1.8: An interval J < | is called invariant for equation (1.3) if every solution {X(t):t € T} of equation (1.3)
with initial conditions (X(o(t,)), X(t,)) € J x J satisfies X(t)eJ forall t eT.

For a real number X(t,) and a positive number R, let O(X(t,), R) ={x(t) :| x(t) — x(t,) |< R}.

For other basic terminologies and results of difference equations the reader is referred to [17].
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1l. MAIN RESULTS
2.1 Local asymptotic stability of the equilibrium points

Consider the rational dynamic equation on discrete time scales

_ax(t) - bx(p(t)
o) = oy 21

where a,b,c >0 and m>1..

a c 1 _ .
Let a' = b c'=—,and d'= b Then equation (2.1) can be rewritten as

_ax(t) —x(o(t)
X(oM)=—" O teT. (2.2)

The change of variables y(t) = (d")™x(t), followed by the change X(t) = y(t) reduces the above equation to

o= ooy T (23

a C
where p=a’ = B and q=c'= B Hereafter, we focus our attention on equation (2.3) instead of equation (2.1).

Now, when M is the ratio of odd positive integers, equation (2.3) has only two equilibrium points
a =0, and ﬂ:,m/p—q—l,
and when M is positive rational number and numerator's even positive integers, equation (2.3) has unique equilibrium point
a=0if p<q+,

and three equilibrium points:

a=0,p= L“f p—q-1l,andy=—yp—q-1if p>q-+1.Furthermore, suppose that, m = 2;+1, kK.neZ,.

n

Then, in this case, we consider x(t)>0 forall teT.
When p <q+1, equation (2.3) has unique equilibrium point
a=0.

When p > +1, however, equation (2.3) has the following two equilibrium points:

a =0, and ﬂ:wm/p—q—l.
The local asymptotic behavior of & =0 is characterized by the following result.
THEOREM 2.1:
(1) If > max{l, p—1}, then « is locally asymptotically stable.
(2) If p—1<qg=<1, then « isarepeller.

(3) If Q< p—1, then « is a saddle point.
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Proof: The Linearized equation associated with equation (2.3) about the equilibrium point & =0 is

z(a(t))—apz(t)+§z(p(t)) ~0,teT.

Now, when T =7, then equation (2.4) becomes

The characteristic equation associated with equation (2.5) is

A% - p/1+—_0 where z(t) = A,
q q

when T =r", r>1, then equation (2.4) becomes

r

zM—Eszrlzn,1 =0,nelN.
r q r

The characteristic equation associated with equation (2.7) is

A% — p/1+—_0 where z(t) = 2% ®,
q q

when T = hZ, then equation (2.4) becomes

p 1
Zonsy —— Zin = Zhgngy = =0,neZ.

The characteristic equation associated with equation (2.9) is

A% - p/1+—_0 where z(t) = A"",
q q

andwhen T = Né, then equation (2.4) becomes

p 1 _
Z(M)2 —a Z, +a z(nfl)2 =0,neN,.

The characteristic equation associated with equation (2.9) is

A% - p/1+—_0 where z(t) = A
q q

Hence, the characteristic equation associated with equation (2.4) is

2 P10 forallteT.
9 q

Let u=—£, and v:l.

q q

(1) The result follows from Theorem 1.2 (1) and the following relations

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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lul-arv)=L @+ )= P=D=0 5 ang v=L
a = q q q

(2) The result follows from Theorem 1.2(2) and the following relations

1 £_|q+1|:(p_1)_q
q

lul-|1+vi=R o142 = <0, and|v|=§>1.

a q q
(3) Note that q=<p—-1< p2 /4. The result follows from Theorem 1.2 (3) and the following relations
l—tavie P L P @4 (0-D-a, 4 oy gy o (P4l P L )
a q q q q q q
Now, the local asymptotic behavior of £ and y are characterized by the following result.
Theorem 2.2 : Assume that p #1.
(i) Ifeither mM(p—g-1)<p—-2or 3p—1<qg=<1where m=1,
then both [ and ¥ are locally asymptotically stable.
(ii) If eitherm(p—q—21) > p—2o0r q > max{l, 3p —1}, where m=1,
then both S and ¥ are repeller.
(iii) If either p—1<q=<3p—1,where m=1, then S isa saddle point.
Proof : The Linearized equation associated with equation (2.3) about the equilibrium £ is
2(o(t)) - I[ilz(t)+ m(p_q__ll)+1z(p(t)) —0. (2.14)
Hence, the characteristic equation associated with equation (2.14) is
PO PN Gl e RN VP §
p-1 p-1
Letu=—P ang y=M(P=4-D+1
p-1 p-1

(i) Assume m(p—qg—1) < p—2, then, p >1. Then, from Theorem 1.2 (1) and the following relations

m(p-q-D+1 ;P m(p-q-D+py, -m(p-4-1
p-1 p-1 p-1 p-1

P
Jul=+) =B

and

m(p-gq-1)+1
y=mp-a-D+1_,
p-1
we conclude that /3 is locally asymptotically stable. Assume 3p—1~<q <1, where m=1, then, p <1. Then, from
Theorem 1.2 (1) and the following relations
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|u|—(V+1)=| p |_((p_q)+1): p _((p_Q)+p_l):3p_l_q_<o,
p-1° ~ p-1 1-p p-1 1-p
and
y=P-4_9-p 4
p-1 1-p

we conclude that /3 is locally asymptotically stable. Similarly, we can prove that y is locally asymptotically stable.

(ii) Assume m(p—qg-—1) > p—2, then, p >1. Then, from Theorem 1.2 (2) and the following relations

m(p—q—1)+1+1)= P _(m(p—q—1)+p):—m(p—q—1)<0
p-1 p-1 p-1 p-1

lul—(v+1) = —2— |~
p-1
and

|VFnKp—q—D+1>L
p-1

we conclude that /3 is a repeller. Assume that 0 > max{l, 3p —1}, where m=1. Then, from Theorem 1.2 (2) and the
following relations

- 2p-q-1, (3p-1)-
0l —vit P P=® g P 2p-a-1_@p-D-q_,
p-1 p-1 | p—1f p-1 | p-1f

and when p =1, wehave q—p>2p—-1>0,s0

v Ry
p-1" p-1
when p<1, wehave g >1> p,so
|V|—|p q|:q_p 1’
p-1' 1-

we conclude that /3 is a repeller. Similarly, we can prove that y is a repeller.

(iii) 1f p > 1. Note that the given condition is equivalent to P >~| 2p—0—1|. Besides, we have

g-p-1> M Then, from Theorem 1.2 (3) and the following relations
4(p-1)
= fvaid P = P29 g P [2P=a-1 o

L I |

2 Py _4p-9)_ 1
—4v= - - 4(p-1)q-p(3p-4)]>0,
W—av=( ) = g [P A -4l

we conclude that £ is a saddle point.
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Assume that P <1. Note that the given condition is equivalentto p =] 2p—q—1|. Besides, we have

4-3
g=<3p-1< u Then, from Theorem 1.2 (3) and the following relations

4(1-p)

ul-fvrip P Py gy P [2P=adl g o
p-1 p-1 1-p  1-p

2 P . 4p-0q) 1
4y = - = 4-3p)—4(1- 0,
v = (B =S < Tp(4-3p) - 40— Pl

we conclude that /3 is a saddle point.

2.2 Boundedness of solutions of equation (2.3)

In this section, we study the boundedness of solution of equation (2.3).

Theorem 2.3: Suppose that pP+1<q and m s positive rational number and numerator's even positive integers,

i =1,2. Then the solution of equation (2.3) is bounded forall t e T .
Proof: We argue that | X(t) |< A for all t €T by induction on t.

Case (1): If T =Z. Given any initial conditions | X ; [< A and | x, |[< A, we argue that | X, |< A forall neZ by
induction on N . It follows from the given initial conditions that this assertion is true for N =—1,0. Suppose the assertion is
true for N—2 and n—1(n>1). That s,

|X, ,[<Aand |x ,|< A

Now, we consider X, where we put N instead of (n +1) in equation (2.3),

| pxn—l_xn—zl p|Xn—1|+|Xn—2| (p+1)A
| X, I< =< - < ¢ (2.15)
la+X,., | la+X,0, | la+X0, |

Since,

[aq+X, |=q+X; >q>0,;<1.

mo> — < (2.16)
| q + Xn—2 | q

From (2.15) and (2.16), we obtain,

< A for all n.

Ix |<(p+1)A
" q

Case(2): If T=hZ={hk:h>0and k € Z}. Given any initial conditions | X ;, |[< Aand | X, |< A, we argue that
| X,, [< A forall neZ by induction on n. It follows from the given initial conditions that this assertion is true for

n=-1,0. Suppose the assertion is true for N—2 and n—1(n>1). That s,
| Xong) R A@nd [ X4 < A
Now, we consider X, , where we put hn instead of h(n+1) in equation (2.3),
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Ix | | PXh 1) — Xn(n-2) | < p| X (n-1) |+ Xh(n-2) |_< (p+DHA (2.17)
hn 1— - . '
a0+ Xin) | |9+ Xino | | d+ Xin) |
1 1
Since, | A+ Xy F A+ X000y 29> 0, ————— <~ (2.18)

| q + Xtr1n(n—2) | q
From (2.17) and (2.18), we obtain,

(p+DHA

| X, < < A for all n.

Case (3): If T=N2={n’:neN,}. Given any initial conditions |X |<Aand|X,|<A, we argue that
| |< A forall k=n? neN, byinduction on K . It follows from the given initial conditions that this assertion is true
for k =0,1. Suppose the assertion is true for (N—2)> and (n—1). Thatis,

| X2y <Aand |x ,|<A

(n-1)?

Now, we consider X, where we put n instead of (n +1) in equation (2.3),

X Xy |£ PIX e 11X oy | __(p+DA

IX . |< — — — : (2.19)
| q + X(n_2)2 | | q + X(n_z)z | | q + X(n_2)2 |
1 m m 1 1
Since, g+ X n_2y? =g+ Xz 20> 0, ———=<—. (2.20)
la+%; .1 d

From (2.19) and (2.20), we obtain,

(p+DHA

| X, |x ————=< A for all k.
q

Case(d): If T=r",r>=1 Given any initial conditions |X, [<Aand|x|<A, we argue that
| X |< A forall ker", neN by induction on K . It follows from the given initial conditions that this assertion is true

for k =1/r,1. Suppose the assertion is true for K =r"? and k =r"", where n e N. Thatis,
| X R Aand [X,. <A
Now, we consider X2, where we put n instead of (n +1) in equation (2.3),

- PIX s | +]X 0 |< (p+DA

|X. < — . (2.21)
lg+xT. | 1g+xD, |
Since, lg+X7. Fa+X5. >0, p—t}sl (2.22)
la+x5.|

From (2.21) and (2.22), we obtain,

| X, < M< A for all k.This completes the proof.
q
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2.3 Periodic solutions of equation
In this section, we study the existence of periodic solutions of equation (2.3).
The following theorem states the necessary and sufficient conditions that this equation has a periodic solutions.

Theorem 2.4: Equation (2.3) has prime period two solutions if and only if
q>3p-1where q= p°+pand m=1.
Proof: First, suppose that, there exists a prime period two solution
R VNGRS

of equation (2.3). We will prove that ¢ > 3p —1. We see from equation (2.3) that

o=V and = POV
q+¢ q+y

Then, @ +¢° = py —@, and yq+y?’ = pp—y, hence,
Ae—y)+(@—y)e+y)=py - @)+ —p).
Since, @— =0, q+(@+y)=—1— p.Therefore,

p+y =—(p+q+1), (2.23)
and so,
¢_W=pr—whﬂWFﬂﬁ+Mw—¢X¢+w)Sm%_{¢+q@H#0+¢wkﬂm+q+m¢+W)

(a+o)a+y)
Hence,
ey =—q(p+q+)—(p+a)(p+y). (2.24)

From (2.23) and (2.24), we obtain
oy =—a(p+q+1)+(p+a)(p+q+1). Then, oy =p(p+q+1). (225
It is clear now, from equation (2.23) and (2.25) that ¢ and y are the two distinct roots of the quadratic equation
t* +(p+q+)t+p(p+q+1) =0,
So, (p+q+1)(q+1-3p)>0. Then, q> 3p—1.

Second, suppose that ¢ > 3P —1. We will show that equation (2.3) has a prime period two solutions. Assume that

¢:—(p+q+D+«Kp;q+D«er3p)’mm W:—{p+q+D—«Kp;q+1Xq+l—3m_

Therefore @ and i are distinct real numbers. Set,

X(pt,)) =9 and x(t) =y, t, <T.

We wish to show that
X(a(ty)) = x(p(t,)) = @.
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It follows from equation (2.3) that
PX(ty) — X(o(t,))
Ko = o)
_Pl=(p+a+D)+(p+q+1)(a+1-3p) [(p+q+D)+(p+q+1)(g+1-3p)]
@-p-D-{(p+9+1(g+1-3p)  (9-p-1-y(p+a+1)(q+1-3p)
_(a+p+D@A-p)+(p+1Dy(p+q+1)(q+1-3p)
(@-p-1)—(p+a+1)(q+1-3p)
_(a+p+)(-p)+(p+Dy(p+a+1)(q+1-3p)
(q-p-1)*-(p+q+1)(q+1-3p)
_ 2(p*+p-q)l(p+a+D)+y(p+a+1)(q+1-3p)]
4(p*+p-q)

:_(p+q+1)+J(p;q+l)(q+l—3p) X)) =% P+ p.

Similarly as before one can easily show that
X(o(t)) =, where x(p(t)) =@ and x(t) =y.
Thus equation (2.3) has the prime period two solution

---a(o,l//a§01 l//l"'l

<[[@=p-1)+/(p+q+1)(a+1-3p)]

where @ and y are the distinct roots of the quadratic equation (2.3). The proof is completed.

To examine the global attractivity of the equilibrium points of equation (2.3), we first need to determine the invariant
intervals for equation (2.3).

2.4 Invariant intervals and global attractivity of the zero equilibria

In this subsection, we determine the family of invariant intervals centered at o = 0.

Theorem 2.5: Assume (> P-+1. Then for any positive real number
A<(@-(p+1)"",
The interval O(0, A) = (—A, A) is invariant for eq. (2.3).
Proof: We consider T =7, hZ ={hk :h>0 and k € Z}, Né ={n*:ne N,}, and N, r>-1.

Case (1): If T =Z. Given any initial conditions | X, [< A and | x, |< A we argue that | X, |< A forall neZ by

induction on N . It follows from the given initial conditions that this assertion is true for N =—1,0. Suppose the assertion is
true for N—2 and n—1(n>1). That s,

%2 R A<(q=(p+1)"", and | X, K A<(q—(p+1)"".
Now, we consider X, where we put N instead of (n+1) in equation (2.3). Since,

q+x, =q—A">q-(q—(p+1))=p+1>0,
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p+1

=<1, (2.26)
| g+ X, |

Thus,

| PXos = Xoo | PIXoa [+ % | p+1
|n|£ n-1 rnn2 < n-1 . n-2 S( — )XmaX{lxn_ll,lxn_zl}
|q+Xn_2| |q+xn—2| |q+xn—2

<max{| x,, |,| X, , |[}< A forall neZ.

Case (2): If T =hZ ={hk :h =0 and k € Z}. Given any initial conditions | X ,, |< A and | X, |< A, we argue that
| X, [< A forall neZ by induction on n. It follows from the given initial conditions that this assertion is true for

n =—h, 0. Suppose the assertion is true for N—2 and n—1(n>1). That s,
[ Yoy R A< (@—(p+D))"", and [ X,y K A< (@—(p+D))"".
Now, we consider X, , where we put hn instead of h(n+1) in equation (2.3). Since,
A+ Xna = 0—A"2g—(q—(p+1))=p+1>0,

p+1

- <1 (2.27)
| 4+ Xy(n-2) |

Thus,

X —X X +| X
x| | p h(n-1) _ h(n—2) | < Pl h(n-1) Im | h(n-2) |£( p:]- ) max{] Xoto ] Xoion 3
|9+ X2 | | A+ X0 2 | | A+ X0 2 |

< max{]| X, 5 |s| Xy(n2) [} =< A forall neZ.

Case (3): If T = N2 ={n’ :n e N_}. Given any initial conditions | X, |< A and | X, |< A, we argue that
| % |< A forall k=n? neN, byinduction on k. It follows from the given initial conditions that this assertion is true

for k =0,1. Suppose the assertion is true for (N—2)* and (n—1)%. Thatis,

X, o KAS(@=(p+D1)"", and |x . < A<(@—(p+D)"".

(n-2) (n-1)

Now, we consider X2 where we put n instead of (n +1) in equation (2.3). Since,

q+X; e = d—A"2q-(q-(p+1)=p+1>0,

p+1 (2.28)
[q+X; 0 |
Thus,
ix e Do Xoor | PPoap e [ Dt o
n? = m - m - m (n-2)? "1 T(n-2)?
| q + X(n—2)2 | | q + X(n—Z)z | | q + X(n_2)2 |
<max{|x . |IX, . [}=<A forall k= n’.
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Case (4): If T =r", r 1. Given any initial conditions | X, |[< A and | x, |[< A, we argue that
| X, |< A forall ker", neN by induction on K . It follows from the given initial conditions that this assertion is true

for k =1/r,1. Suppose the assertion is true for K =r"? and k =r"", where n e N. Thatis,
1/m 1/m
| X RAS(g—(p+D))™", and [ X ., K A<(q—(p+1)""
Now, we consider X2, where we put n instead of (n +1) in equation (2.3). Since,

q+X5. =q—A">q-(q—-(p+1)=p+1>0,
(2.29)

Thus,

| PX s =X | PIX s [+ X0 | p+1
| X, [€———"—< ———— <( )y max{| X .. [,| X.. [}
|q+xr"*2| |q+Xn—2 |q+Xn,2

<max{| X .. ;| x.. [}< A forall n. This completes the proof.
Now, we investigate the global attractivity of the equilibrium point o = 0.

Lemma2.1: Assumethat T =7, > p+1, and m is positive rational number and numerator's even positive integers.
Furthermore, suppose that

R=(q-(p+1)™, (2.30)
and consider equation (2.3) with the restriction that

f :0(0,R)xO(0, R) = O(0, R).

Let {X,} be a solution of this equation and

_ 1+p . 231
i q—(max{| x_, || %, [H)" (231

Then, R, €(0,1), and
| %, < R xmax{] x, |, %, [}, n=1,2,... . (2.32)

Proof: From Theorem 2.5, we have
X, A<R,n=-1012,.. |,
where we put N instead of (N+1) in equation (2.3). Then, (Max{| x, |,| %, IH™ <R™.
Thus,
q—(max{] x., |.[ % [H)" = gq-R" =1+ p>-0.

Hence,
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1+p
q (max{] X, [, %, )"

Now, we prove that (2.32), by induction on N . From equation (2.3), we have
p+1

<1. Thismeansthat R, € (0,1).

| X, IS ———= (P 1 Xy s [+ %5 )< =) max{| X,y LI X, [} (2.33)
|9+X, | 1q+X, |
<max{| x,, |,| X, , [}, from (2.26). (2.34)
Then, from (2.33), we obtain
p+1
< max{| x, |,| x_, [}- 2.35
1% | (|q+x[“1|) {% Lx [} (2.35)

But

[+ X7 = g—(max{| x, |,| x, )" >g—R"™ =1+ p > 0. Then,
| g+ X" > q—(max{| X, || x_; [})™ > 0.

From (2.35), we have

p+1
1% 1< (PP maxg] x, 1 %, [3< _max{] X, || X, [}
& | _1| g (max{ % 1 x4 1) Yo bl %
< Roxmax{] %, |,] X, [}< R scmaxg] , || X, [}
and from (2.33) and (2.34), we obtain
1
%, < (2 '° Ly max{] x .| % [} < pr ax{| %, .| % [}

ld+Xg | q—(max{| x, || %, [})"
p+1

q (max{max{] x, .| X_; [}.] X, [})"
p+1
" - (maxq] X1l % D"

Thus, the inequality (2.32) holds for N =1, 2. Suppose that the inequality (2.32) holds for n—1 and n—2(n>3),
respectively. By (2.34), we have

xmax{max{| x, |,| x; [}, %, [}

xmax{] X |, %o [}= Ry xmax{] x; ] , [}

| X, [ max{| X, |,| x_; [} forall n.
So,
p+1 < p+1 < p+1
lq+X, | a=1% o " q—(max{]x, I x,[}H)"

= R1
Then, from (2.33), we have

+1
X, I (m"’—l) max{] X, ; |\ X, , [} < R max{| x, , || X, , [}
n2
< R xmax{R" "2, R/ 21 max{| %, |,| X, [}< R max{] %, |,| x,, [}-
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This completes the inductive proof of (2.32).

Lemma 2.2: Assume that T =hZ ={hk:he(0,1) and k € Z}, g > p+1, and m is positive rational number and

numerator's even positive integers. Furthermore, suppose that (2.30) holds and consider equation (2.3) with the restriction
that

f :0(0,R)xO(0,R) —O(0, R).

Let {X,, :h €(0,1) and n e Z} be a solution of this equation and

R = 1+p _ (2.36)
q—(max{| x_, |.| %, [})
Then, R, €(0,2), and | x,, |< R™?xmax{| x_, |,| %, [}, n=12,.... (2.37)
Proof: From Theorem 2.5, we have
| X, K A<R,n=-101,... ,
Where we put hn instead of h(n+1) in equation (2.3). Then, (max{| x_, |,| X, [H™ < R™. Thus,
q—(max{| x_,, |,| %, D" =q—R™ =1+ p > 0. Hence,
1+p <1. Thismeansthat R, €(0,1).
q (max{| x_, |, %, )"
Now, we prove that (2.37), by induction on N . From equation (2.3), we have
P Xy |+ Xhnry | +1
| X [ 020 PEEy ma] X, L X 3 (2.38)
|q+Xmma| |q+XMmD|
< max{] X,y I Xonzy [}, from (2.27). (2.39)
Then, from (2.38), we obtain
ImK(p T maxtlx | (2.40)

But

[g+x", 2 q—(max{| X, |,| x_, D" =q—R™ =1+ p>=0.Then, [q+x"}, |>q—(max{|x,[.|x_, )" >0.

From (2.40), we have

+1
|qup ymax{] X, || x_, [}< D max] X, || X, [}

X" | g — (max{] x, || X, [H)"
<R, xmax{] %, |,] X, [}< RM2xmax{| x, |.| x_, [},
and from (2.38) and (2.39), we obtain
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p+1
g — (max{] x, .| X, [})"

R PT |) max{]| %, |,| %, [}< ax{| x, |1 % [}

p+1
= (max{max{] Xo 11X [ % D) xamax{max{| X, [,| Xy [},] %o [
p+1 .
“ammadi e s b B Rxmaxdi, L [
< R2M2 max{| x_, |,] %, [}-

Thus, the inequality (2.37) holds for N =1, 2. Suppose that the inequality (2.37) holds for h(n—1) and h(n—2)(n>3),
respectively. By (2.39), we have

| X, [€ max{] X, || X_,, [} forall n.
So,
p+1 p+1 p+1

0= < <
| g+ Xr:n(nfz) | q_l Xh(n—2) |m q —(max{| Xy |,| X p |})

m=R1'

Then, from (2.38), we have

+1
| Xy |< (— P

|q T x |) max{| Xn(n-1) |,| Xn(n-2) |}S R1 max{| Xi(n-1) |1| Xn(n-2) |}
h(n-2)

< R Max{] X,y z | Xygoz) 1< RTxmax{RI"'2, RID 2 xcmax{| %, | x., [}
<R™2 max{] %, 1,1 X, [}
This completes the inductive proof of (2.37).

Lemma 2.3: Assume that T =N2 ={n’:neN_}, > p+1, and m is positive rational number and numerator's even
positive integers. Furthermore, suppose that (2.30) holds and consider equation (2.3) with the restriction that

f :0(0,R)xO(0, R) = O(0, R).

Let {X, :k=n? and neN_} be a solution of this equation and

- 1+p 241
A e e ) (249

Then,
| %, [< RZxmax{] x, || %, [} k=14,.... (2.42)

Proof: From Theorem 2.5, we have
X, K A<R, k=12,..
where we put N instead of (N+1) in equation (2.3). Then, (Max{| x |,| %, [H™ < R™.
Thus,
q—(max{| x, .| %, })" »q—R" =1+ p>-0.

Hence,
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< 1+p
q—(max{] % [, %, ("

Now, we prove that (2.42), by induction on K . From equation (2.3), we have

<1.Thismeansthat R, €(0,1).

< p | X(n,l)2 |+ | X(n,2)2 |

I, I .
[a+X; e |
<P ymax{ix L LIx .
- |CI+X(n;72)z | (n-1? "1 T(n-2)°
<max{|x . LIX, . [} from (2.28).

Then, from (2.43), we obtain

+1

p
ymax{] x, .| % [}
g+ x| obl%

RN

But

lg+x" [>a-|%"|>=g—(max{| %, |,| X )" =g—R™ =1+ p > 0.Then,

la+x" [>q—(max{] x, |,| x, [})™ > 0.

From (2.45), we have

p+1

p+1
1% 1< 2y maxg] x, % [3< _max{| x, || % [}
g T R S S T a0 1 %, 1) obl%
< Ryxmax] % || % [} < RYZ x max{] X, .| % [}
and from (2.43) and (2.44), we obtain
p+1 p+1
1% 1< (2L max x, 1 %, 1< _max{] x, .| %, }
g IS T a1 % 1) bl
< p+1 < max{R, max{| %, || %, [} ¥ [}
q— (maxgmax{| % | % [} % 1) o %L
p+1

g maxtx x gy Ml b = Rbamaxdix L [y

< R semax{] x, |, %, [}

Thus, the inequality (2.42) holds for N =1, 2. Suppose that the inequality (2.42) holds for (N—1)* and (n—2)?,

respectively. By (2.44), we have

| X, [< max{] x - [} forall neN,,.

(n-1)2 |’| X(nfz

(2.43)

(2.44)

(2.45)
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p+1 p+1 p+1

m

So, < _< _ =
la+x0 0 | a=1% e M = (max{ x| %, [})

R,.
Then, from (2.43), we have

p+1
| an |S (m) max{l X(n,1)2 |’| X(n,2)2 |}S Rl max{l X(n,1)2 |7| X(n,2)2 |}
(n-2)

<max{R" "' R }xmax{| %, |1 %, [}} < R™""2 max{| x, |.| x [}, n=3,4....
<R max{| x, |,| x, [}, n=12,...
This completes the inductive proof of (2.42).

Lemma 2.4: Assumethat T =r", 1<r <2, g> p+1 and m is positive rational number and numerator's even
positive integers. Furthermore, suppose that (2.30) holds and consider equation (2.3) with the restriction that

f :0(0,R)xO(0, R) = O(0, R).

Let {x, :k=r", neN and 1<r <2} be a solution of this equation and

- 1+p . 2.46
i q—(max{| X, .| % [})" (2:49)
Then, R, €(0,2), and | x [<R*xmax{| x,, || x [} (2.47)

Proof: From Theorem 2.5, we have

X <K A<R, k=r",neN,and 1<r<2,

where we put N instead of (N+1) in equation (2.3). Then, (mMax , ™ < R™ Thus,
Xl/r Xl

m m 1+p .
q—(max{| x,, |,| x [P >g—-R"™ =1+ p>0. Hence, 0 < — < 1. Thismeansthat
: q— (max{] x,,, |, % [}
R, €(0,1).
Now, we prove that (2.47), by induction on N . From equation (2.3), we have
| Xoo IS = (P X.0a [ +] X0z ])
la+X5. |
+1
g(r—E—7r—Prnax{|xwlL|xwz|} (2.48)
< max{| X .. |,| X, [}, from (2.29). (2.49)
Then, from (2.48), we obtain
+1
1%, < (2 max{] %, 1 % I3 (2.50)

|G+, |

But
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|d+ X3, > a—] ], = aq—(max{| x,, |,| % [})" >q—-R" =1+ p>0.Then,

| g+ Xy, [ 0= x], [>aq—(max{| x,, |,| % [})" >0.

From (2.50), we have
p+1 p+1

|G+ X | g — (max{| X, [, [1)"
< Ryxemax{] X, 1% [} =< R xmax{] x,;, 1% [},

and from (2.48) and (2.49), we obtain

| %, 1< ( ymax{] X, |\ % [}< max{| Xy, .| % [}

p+1 p+1
e b (g M b Smax{]x, |1 % [
C e " G —(max{| X, |.[% [}) &
p+1 r/2
< —x max{ max{| x,, || x [} % [}
a—maxmax{ e, L% By e e kDb
p+1 ri2

X

< —xR xmax{| x,, || |}<R><R”2xmax{| B
q—(max{| x,, LI }H" Xyr b1 [F < Ryx Ry Xye b1 %

2
< R xmax{] x,, |, % [}< R xmax{] x,, |, % [}
Thus, the inequality (2.47) holds for K =T, re. Suppose that the inequality (2.47) holds for
k=r"?and k=r"", neN, respectively. By (2.49), we have
| X o [< max{] X . [,| x.. [} forall n.

So,

p+n% < p+1 < p+1 -
lg+x5. | a=1%.. " a—(max{Ixy,, |.I%})

0= R.

Then, from (2.48), we have

+1
%0 1< (Y maxd] X, ] X, [1< Ry maxg] X, 1., [}

|q+X |
<max{R""* max{ x,, |, x [} R max{]x,, |, [}}

<R" " xmax{| x,, || % [}}, n=3,4,...
<R xmax{| X, || % [}, n=12,3,...

This completes the inductive proof of (2.47).

Theorem 2.6: Assume that > p+1, and m is positive rational number and numerator's even positive integers.
Furthermore, suppose that (2.30) holds, and consider equation (2.3) with the restriction that

f :0(0,R)xO(0, R) —O(0, R).

Then the equilibrium point & =0 of the equation (2.3) is a global attractor.
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Proof: From Lemmas 2.i, 1 =1,2,3,4, X(t) > a =0 when t — oo, then the equilibrium point &z =0 of the equation
(2.3) is a global attractor.

Next, we determine the family of invariant intervals centered at 3 = L”/ p—q-1, where p>q-+1.

2.5 Invariant intervals and global attractivity of the nonzero equilibria
In this subsection, we consider the discrete time scales
T=7ZhZ={hk:h>=0and keZ}, N={n":neN,}, and r™, r =1, m=1. This means that, we determine

the family of invariant intervals centered at f = p—q—L1. To this end, we establish the following relation.

L, PO-x(p)_pB-p _, pxO+a _,_pp+a_,
o P="0 50  aip g ) Carp D

__PXO+a_pp+a_ px(O+a __ppta . pA+A__pf+a,
q+x<p(t)) G+ B qrx(p®) a+x(e®) qex(o) q+ 4

P +q 0y
700 O P T e N0
Inviewof pB+q=_>1+/5)(q+/L)=(p—0)(q+ ), the above equality is reduced to
t)- 4= _— t Th
M)~ = (t»( ) f)+ ( (t))< (p(t))— B).Thus,
X(o0) - Al o s X0 - A1)+ 'q PL oty - 51
X (o)
< w max{| x(p ()~ £ 1| x(t)— A1} (2.51)
9+ x(p(1)

Now, we are ready to describe the family of nested invariant intervals centered at [ .
Theorem 2.7: Assumethat P ~<1/2, and 3p—1<q~<21—p. Then for every positive number
A<min{g—(3p-1),1-p)—qg,1-2p}, (2.52)
the interval
OB, A=(B-AB+A

is invariant for equation (2.3).
Proof: Case (1): If T =7, given any initial conditions

X, —FlkAand | X, — < A
we argue that

| X, — A< A for all n byinductionon n.

The proof is similar to the proof of Theorem 4.2 in [24 ] and will be omitted.
Case 2: If T =hZ, given any initial conditions

X, —Fl<KAand | X, —FI< A
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we argue that

| X,, — A< A for all n byinductionon n.

It follows from the given initial assertion is true for N =—1,0. Suppose the asseration is true for

h(n—2) and h(n—1).That is,
| X2y — B < Aand | Xnngy =5 <A
Now, we consider X, where we put hn instead of h(n+1) in equation (2.51). Since,
0+ Xz <A+ (B+A) =q+(p-q-D+A<A-(1-p)<A-(1-p) <0,
wehave | g+ X, = —(0+ X, )- Now, thecondition A<q—(1-2p)isequivalent to
-q-(B+A)-p=(Q1-2p)-A=0,

the condition A<q-(3p—1)isequivalentto

p-a<-(@+(B8+A)+p)
and the condition A< (1— p)—qisequivalentto

P—qz(q+(B+A)+p).
So, |p-qK-=(g+(B+A)+ p). Thus,

|G+ Xyno) [ =(P+I P=0]) =—=(A+ X)) — P—| P—0]
>—q-(B+A)-p-|p-al--q9-(B+A)-p+q+(B+A)+p=0.
From this we deduce that
prip—al _,
|q+xh(n—2)|
By (2.51), we have
+ —
_pc PrIp-al
|q+xh(n—2)|

<max{| X,nqy = Bl Xpno) = BIF=< A

This completes the inductive proof.

| X, x max{| Xn(n1y — B L, Xnn2) ~ B I}

When T :Né and r", r =1, the proof will be omitted.
Now, we investigate the global attractivity of the equilibrium point /3.
Lemma 2.8: Assumethat T =7, p<1/2, and 3p—1<q=<1—p. Consider equation (2.3) with the restriction that
f :O(f,R)xO(f,R) »>O(L,R), where
R=min{q—(3p-1),1-p)—q,1-2p}. (2.53)

Let {X,} be a solution of this equation and

1- p—max{l X—l_ﬁH Xo_ﬂl}
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Then, M €(0,1), and

|x — B M2 xmax{| X, — Bl % — B} n=12,...  (2.55)
The proof is similar to the proof of Lemma 6.1 in [24 ] and will be omitted.

Lemma 2.9: Assume that T =hZ ={hk :h e (0,1) and k e Z}, p<1/2, and 3p-1<qg=<1-p, and (2.53)
holds. Consider equation (2.3) with the restriction that

f:0(B,R)xO(S,R) - O(S,R).

Let {X,, :he(0,1) and n € Z} be a solution of this equation and

1-p-max{|x, - Bl.I%-Al}

Then, M €(0,1), and

| X = BISM™2xmax{| x_, = B11 %, — B[} n=12,...(2.57)

Proof: Note that

1-p-[x,=pgl-(p+Ip-af)»1-p-R-(p+| p—-ql) >1-2p-| p-q|-R.

When, p >q,

1-p-[x4y=Bl=(p+Ip-al)>(a-Bp-1))-R=0.
When, p<aq, 1-p-|x,—-B]—=(p+|p—al)>(1-p)-a)-R=0.
SO, 0< p+| p_ql

1- p_| Xp _ﬁ|
Similarly, 0< prip=al _; Hence, M € (0,1).
1- p_l X p _ﬂl

Next, we prove equation (2.57) by induction on n. By (2.51), where we put hn instead of h(n +1) , We

brp-dl p_Q|><max{| Xo = B|.I X4 — B} Since,
—q-X

~h
—q-X,=(-9-p_—(x;,—p)=1-p—(x,, - B)=21-p-max{| x, - Bl.| x, - B}
>1-p-R>(@0-2p)-R >0, wederive
_ P+l p—al Z|0+|p—q|>0_
1-p-max{|x, - ALIx, -} —-a-x,
Similarly, we have

=<1.

have| X, — A<

M zw>0.Then,
4%
|Xh — B M xmax{] Xo_ﬁlyl Xy -Bl}< Mh/zxmax{l Xo_ﬂlal X - B1}.

And we have,
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1 — A1 PHP=AL i, — 81U, — A1}
q X

0

<M xmax{| X, = B, M xmax{| x, - B|.| X, - B}}
<M xmax{|x,— B ,| x.,,— B}
<M 2 xmax{| x, - B, X, — B1}-

So equation (2.57) holds for n=1,2. Suppose that equation (2.57) holds for h(n—1) and h(n-2), respectively.
By (2.51) and the inductive hypothesis, we have

g = A1 2P e %, = B K0 B}

h(n-2)

wmax{M h(nD)/2 (=212 5 mayd| X,—BLIx, - B3}
q Xh(n 2)

Now, fromTheorem (2.7), we have

| Xon _ﬂ |S max{l Xh(n—l) _IB |,| Xh(n—Z) _IB |}
By inductionon n, wecan prove

| Xon = B max{| X, — B1,I X_, = B}, hence,
~A= X2 = (0= F) = Xy0-0) = F) =1 P~ Xy0-0) = F)
21-p-max{| X, — B, x, - B}~1-p-R>(1-2p)-R =0,

weconclude 0= w <M, then
—0 =Xy (n-2)

X — A<M xmax{M h(n—l)IZ,Mh(n—Z)IZ}X max{| x, — B|,| x_, — B[}}

| hn lBl 0 "
<M M2 max{M h(n—l)/2’ M h(n—z)/z}>< max{l X, - B |’| X, -B |}}
<M ™2 xmax{M ", Bxmax{| x, - B,| X, — B}}
<M xmax{| %, - A1 X, ~ B3}

This completes the inductive proof of equation (2.57).

Lemma 2.10: Assume that T =N2 ={n’:neN_}, p=<1/2,and 3p—-1<q=<1—p, and (2.53) holds. Consider
equation (2.3) with the restriction that

f:0(B,R)xO(S,R) »> O(S,R).

Let {X, :k =n® and n e N} be a solution of this equation and

1=p-max{|x A%~ B}

Then, M €(0,1) and

| % = BISM 2 xmax{| x, - B.| %~ B[} k=14,.... (2.59)
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Lemma 2.11: Assumethat T =r",1<r<2, p<1/2,and 3p—1<q<1—p, and (2.53) holds. Consider equation
(2.3) with the restriction that

f:0(B,R)xO(B,R) > O(L,R).

Let {x :k=r",1<r <2, and n € N} be a solution of this equation and

1-p-max{|x, - Bl x-Bl}

Then, M €(0,1) and

| % = BIEM 2 xmax{] ;. = A1 %~ B} (2.61)

Theorem 2.9: Assume that P ~<1/2,and 3p—1<q <1—p, and (2.53) holds. Consider equation (2.3) with the
restriction that

f:0(B,R)xO(S,R) »> O(5,R).

Then the equilibrium point /S of the equation (2.3) is a global attractor.

Proof: From Lemmas 2.i, 1 =8,9,10,11, we obtain x(t) — £ when t — oo, then the equilibrium point § of the
equation (2.3) is a global attractor.
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