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Transport of granular matter on an inclined vibratory conveyor

with circular driving
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Abstract— | present a theoretical model to investigate the transport properties of granular materials on an inclined
vibratory conveyor driven by circular oscillations. My model treats the granular dynamics on a vibratory conveyor as a
combination of sliding and oblique hopping of a granular block with specific inelastic and frictional properties. The
calculations show optimal transport conditions for the transport velocity efficiency, with an extra transport velocity
efficiency minimum when the inclination of the vibratory conveyor is non zero. The investigations also show a current
reversal under a certain inclination angle which does depend on the friction force.
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I. INTRODUCTION

Vibratory conveyors, i.e., troughs that induce the motion of the material laying on them when they are oscillating, are
extensively used in industry for the handling and transport of granular materials. They present many advantages such as the
simplicity of their construction, the controllable feeding speed, the possibility of mixing and/or segregating different types of
granular materials laying on them by tuning the right oscillating frequencies, and finally the self-cleaning operating

mode [1-4]. Consequently, extensive theoretical and experimental [3—15] studies were devoted to the properties and dynamic
of granular materials on these devices using mainly two types of driving modes: linear and circular. The experimental
investigations revealed the existence of optimal transport conditions, i.e., maximal and minimal transport velocity for special
throw numbers ['=an,x /gcos (o), where ap,y is the maximal vertical acceleration, o the trough inclination angle, and g is the
gravitational acceleration. Moreover, the transport velocity of granular materials using a circular driving mode showed a
surprising current reversal as a consequence of a continuous variation of I". Previous theoretical investigations using macro-
mechanical models for the hopping and gliding dynamics reproduced successfully the experimental findings [3, 11, 12], and
explained the dynamical origin of the optimal transport conditions.

In this work, | investigate the effect of the tilt of a vibratory conveyor driven by circular oscillations on the transport
properties of granular materials. More specifically, | investigate the effects of this tilt on the current reversal and on the
optimal transport dynamics.

Il. MODEL

The basic setup of an inclined vibratory conveyor is schematically sketched in Fig.1. The angle o represents the inclination of
the trough relative to the horizontal. The frame XQOY is fixed in space, whereas the frame xoy is attached to the trough and is
co-moving with it. The positive transport direction as shown in the figure, is upward. The trough is driven by circular
oscillations:

X = Acos(ot) 1

Y = Asin(ot) )
Where t is the time, X and Y are the coordinates of the troughin the XOY frame, A the amplitude of the trough oscillations,
and o the oscillation frequency of the conveyor.

The model is based on the assumption that the motion of the moving granular material is that of a granular block with
constant mass m. It also assumes that the granular block can perform two distinct types of dynamics: sliding and bouncing
motions under the action of the driving forces. We also suppose that collisions between the granular block and the trough
after oblique hopping are instantaneous and, by inference, generally inelastic.

The transition from sliding to hopping happens as soon as the following lift—off condition is fulfilled:
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w’Asin(ot) — geos(a) > 0, ©))

where g is the gravitational constant. As long as the projected gravitational acceleration gcos(a) is larger than the conveyor
driving acceleration in the Y—axis, the granular block will perform a gliding motion (G—phase). If equation(3) is fulfilled, the
granular block will detach from the trough and start a free flight phase (F—phase). In the following, the dynamics of these two
phases and the transitions between them are discussed in detail.

o

FIG. 1: The basic setup of the inclined vibratory conveyor. a is the inclination angle. The frame xoy is co—
moving with the trough, while XOY is fixed in space.

1.1 Gliding phase

A gliding phase takes place if, after the granular block hits the trough, the lift—off condition (3) is not fulfilled. During this
phase the granular block performs a sliding motion subject to gravitation and friction forces. The corresponding equations of
motion in the co-moving frame are determined by:

mx = o’mAcos(ot) — gsin(a) + F 4)
my = o’mAsin(ot) + N — mgcos() (5)

Where F is the friction force acting on the block. The problem of the granular friction is an open and complex problem [16,
17] with many intervening parameters such as the size and shape of the particles, as well as the particle and the container
wall roughness. In this work, and for the sake of simplicity, we use the solid coulomb like friction Fy;q as friction force [3, 4,
8] which is defined by:

Fsolia = usgn(X)N (6)

here, the dynamic friction coefficient p is not directly related to the frictional behavior of a single grain. It rather comprises
the whole complexity of the sliding behavior of the underlying interacting many-grain system. Furthermore, N denotes the
normal reaction force which is determined in this case by:

N = —mw?Asin(ot) + mgcos(a) @)
Inserting (6) and (7) into (4) yields:

% = m’Acos(ot) — gsin(a) — psgn( X)(geos(a)) — w?Asin(wmt)) (8)
The solution for the horizontal velocity resulting from (8) reads:

x = A (sin(mt) — sin(mtg)) — gsin(a)(t — to) — usgn(x)[geos(a)(t — tg) + @A(cos(mt) — cos(wtp))] + Xo 9)
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The index 0 denotes the initial condition at the impact and the start of the gliding phase. If the velocity changes its sign, the
index 0O indicates that the solution of (8) must be reiterated with the initial condition at the time of this change. During a
gliding phase, the position and the velocity of the granular block in the y—direction obviously equals zero.

1.2 Free flight phase
The free flight phase starts once the condition in (3) is fulfilled. The lift—off time t, is determined by the condition;
o’Asin(ot)geos(a) =0. The equations of motion in the co-moving frame are then given by:
mx = mo’Acos(ot) — mgsin(o) (10)
my = ma? Asin(ot) — mgcos(c) (11)
Using the lift—off initial conditions, namely x(t;) = x,, y(t) = 0, x(t}) = %, y(t;) = 0, we obtain:
X = oA(sin (wt) — sin (ot))) — gsin(o)(t — ;) + ¥ (12)
v =—wA(cos (ot) — cos (ot))) — gcos(a)(t — t;) + ¥, (13)

The subsequent impact time is determined by the next zero of the solution of the equation for y(t) with the afore-mentioned
initial conditions for the lift—off.

1.3 Collisions with the trough

Collisions between the granular block and the trough are generally inelastic. The velocity of the granular block after the
collision is given by:

i = & x(t) (14)

¥i = —en y(ti) (15)

where the subscript i reflects the corresponding values right at the impact. The restitution coefficients ¢, and &, can take
arbitrary values from 0 to 1. A step—by-step iteration of the combination of these dynamical phases determines the dynamics
of the granular block in an algorithmic way.

I1l. RESULTS AND DISCUSSION

The equations of the previous section are numerically solved and the different dynamic phases as well as the transport
velocity are calculated. We define the transport velocity as the mean value of finite velocities of the granular block along the
trough obtained during the different dynamic phases for several conveying cycles (with the period T = 2n/®). We also
introduce the dimensionless transport velocity efficiency [8] which is defined as the ratio of the granular block velocity and
the maximum tangential trough velocity: n = <V>/Aw. We assume in this work that due to the internal interactions between
the particles, the granular block looses all its normal velocity when it hits the trough (soft cheese approximation), hence we
set the normal restitution coefficient to zero (g, = 0). While, due to the flow, the tangential restitution coefficient is non zero
(sc # 0). We also fix the driving amplitude to the dimensionless arbitrary value A = 0.01, leaving us with three free
parameters: the friction coefficient p, the tangential restitution coefficient & and the inclination angle a. We present in Fig.2
the transport velocity efficiency n of the granular block as function of the dimensionless throw number I' = Aw 2 /gcos (a),
calculated for a = 0° using p = 0.3, for o= 10° using p = 0.3 and p = 0.6 and finally, for o = 30° using p = 0.6. The tangential
restitution coefficient was set to g, = 0.7 for all these calculations. The figure shows many similarities between the velocity
efficiency calculated for a = 0 and o = 10°. The results show, at both inclination angles, the existence of a critical value I'; (o,
w) below which the velocity efficiency is zero. The calculations show that this critical throw number depends on the
inclination angle o as well as on the friction coefficient p. By increasing the acceleration above this threshold a non zero
transport velocity efficiency is obtained which is non monotonous and has optimal transport conditions with two maximums
at'= 1.2 and I' =4.7 and a minimum at I = 3.7. The first maximum is however more pronounced for o = 10° when we use a
smaller friction coefficient u = 0.3. A higher friction coefficient smears the velocity efficiency out at and around this
maximum. Fig.2 shows a second velocity efficiency minimum for o = 10° at I" = 0.6 which lays at I' < 1 where only sliding
motion is possible. Since the dynamics of the granular block at this minimum are those of a sliding motion (G-phase), its
position depends on the friction force as also shown in Fig. 2 (the position of this minimum differs when we use p = 0.3 and
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p = 0.6). For larger throw numbers, the positive driving acceleration becomes large enough to weaken the downhill flow
leading to an increase in the flow velocity.
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FIG. 2: The transport velocity efficiency n = hv/Awi as function of the throw number I' = A® 2 /gcos (o)
calculated using & = 0.7 and p = 0.3 for a = 0 (black) and a = 10° (green). The velocity efficiency (in blue
and red) is calculated using the same tangential restitution coefficient & = 0.7 while the friction coefficient
was set to p = 0.6 for a = 10° and a = 30° respectively.

We also see in Fig. 2 that the transport velocity efficiency for a = 0 and a = 10° oscillates between negative and positive
values of velocity efficiency and subsequently reversing the transport direction many times. Such behavior is called transport
current reversal. Extensive calculations proved that these properties, i.e., optimal transport conditions and current reversal,
are robust under parameter variations (restitution coefficient g, , friction coefficient p, and driving amplitude A) as far as we
do not use unphysical high values for the friction coefficient p.

Our calculations allow us to plot an individual solution which gives us some insight into the global dynamics of the granular
block. To describe qualitatively the motion of the granular block, we plot in Fig.3 the bifurcation diagram which shows the
relative F—phase time t as function of the throw number I'. The relative ¢_pnase ime - =<F/T 1S defined as the Fig. 3.

Fig. 3.
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FIG. 3: Bifurcation diagram: the time of flight T, which is the time of a free flight phase, as function of the
throw number I' = A®’ /gcos(a) calculated for an inclination angle o = 20° and using a driving amplitude A
= 0.01, a solid friction coefficient p = 0.3 and a tangential restitution coefficient & = 0.6, while the normal
restitution coefficient was set to ¢, = 0.
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The figure shows a bifurcation point at I' = 3.7 fraction of the free flight time tg, the time of a free flight phase, to the period
of the driving oscillations T = 2w/w. For I" < 1 the lift—off condition in (3) cannot be fulfilled, hence the granular block is
permanently in contact with the trough. The dynamics are reduced in this case to those of a gliding phase and we have t = 0.
As the throw number departs from I' = 1, the Y component of the conveyor acceleration becomes larger than the gravitational
component gcos(a) at some phases of the driving cycle. Under these conditions, the lift—off condition is fulfilled and hence,
the granular block can perform a free flight motion. The duration tr of the free flight phase increases progressively as the
acceleration increases. Subsequently, the relative free flight time departs from zero and increases proportionally to the throw
number I as shown in Fig.3.

In the range (1 < T < 3.3), the motion of the granular block is periodic with a single period composed of one gliding phase
followed by a free flight phase. This is where the first maximum takes place. Fig.5, which plots the time evolution of the
position of the granular block in the Y direction, shows that the beginning of the gliding phase and that of the positive phase
of the driving acceleration cycle coincides at the maximum. The free flight time tr keeps increasing as the driving
acceleration increases until it is equal to the driving oscillations period T , which takes place at I' = 3.3 and persists until

I' = 3.7. Here the motion of the granular block consists of hopping without gliding. The minimum transport velocity of the
granular block takes place at I' = 3.7. The dynamics of the granular block at this minimum are those of a free flight phase
and, subsequently, are independent of friction.

The bifurcation point in Fig.3 coincides with the minimum transport velocity I' = 3.7. For 3.7 < T < 4.7 we obtain two
solutions for the equations of motion of the granular block. These two solutions correspond to two different free flight
phases, one with t; < 1 and decreasing as the driving acceleration increases until it vanishes at I' = 4.7. The second free flight
phase has a free flight time larger than the driving period (t, > 1) which keeps increasing as the driving acceleration
increases. The total free flight time t = t; + 1, decreases as far as we have two solutions. As the throw number increases, the
beginning of the gliding phase moves from the negative phase of the driving cycle to the positive one, which leads to an
increase of the transport velocity efficiency in the range 3.7 <T" < 4.7. Finally, the second maximum velocity efficiency is at
I' = 4.7 where the beginning of the gliding phase coincides with that of the positive acceleration phase of the driving cycle as
it is the case for the first maximum, but here with a period doubling as shown in Fig. 5.
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FIG. 4: The vertical motion of the granular block (red solid line) and of the table (black solid line) at
minimal transport velocity I' = 3.7 as function of time. At the minimum the motion of the granular block is
periodic and consists on successive and similar free flight phases.

One can conclude that as far as the driving acceleration is large enough, we obtain a maximum transport velocity when the
beginning of the gliding phase coincides with that of the positive phase of the driving cycle. On the other side, the minimum
transport velocity is obtained when the motion of the granular block consists of hopping without gliding.
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We can read of Fig. 2 a general decrease of the transport velocity efficiency as the inclination angle a increases. For a = 10°,
the figure shows a current reversal with positive (uphill) velocity efficiency around the two transport maximums. For the
same inclination angle and a higher friction coefficient (1 = 0.6), the velocity efficiency is positive only around the second
maximum at I' = 4.7. As we further increase the inclination angle, the decrease of the transport velocity efficiency becomes
larger leading to the suppression of the positive (uphill) transport flow in the investigated throw number range (0 <T < 6) at
a = 30°, and subsequently, the suppression of the current reversal.
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FIG. 5: The vertical motion of the table (black solid line) and of the granular block at the first maximum I'=1.7 (re
solid lined) and the second maximum I'=4.8 (green solid line) as function of time, calculated using a solid friction
coefficient p = 0.3.

To investigate the dependence of the current reversal on the inclination angle, we calculate the velocity efficiency n for
different inclination angles o, while we fix all the other parameters including the throw number I'. We set the throw number
to I' = 4.7 which corresponds to the largest transport velocity efficiency in the investigated throw numbers range. We
calculate the velocity efficiency n for inclination angle o in the range 0 < a < 40° with an angle step Aa = 1°. For comparison,
we use two different friction coefficients p = 0.3 and p = 0.6 as well as three different tangential restitution coefficients g =
0.2,0.7 and 0.9.

We can read off Fig. 6, which shows the results of these calculations, the decrease of the transport velocity efficiency as the
inclination angle increases. This decrease is due to the increase of the magnitude of the tangential component of the
gravitational force. The figure shows that this decrease is faster with the larger tangential restitution coefficient, & = 0.9 and
the smaller friction coefficient, p = 0.3. This stems from the facts that, first, as the dynamics of the granular block in a free
flight phase are mainly driven by the gravitational force, the motion of the block is mainly downhill with negative impact
velocity. A larger tangential restitution coefficient promotes a downhill flow by conserving this impact negative velocity.
This effect increase as the inclination angle increases leading to a faster decrease of the transport velocity efficiency with
increasing inclination angle. Second, the friction force resists the flow leading to a decrease of the magnitude of the transport
velocity in both directions, and hence leads to a slower rate of change of the transport velocity efficiency as function of the
inclination angle a. The figure also shows the existence of a limit inclination angle ag(y, & ) above which the transport
velocity efficiency is negative. This inclination angle depends on the friction coefficient p and the tangential restitution
coefficient . We find that ay(0.3, 0.9) = 14°, 0,4(0.3, 0.7) = 18°, 0¢(0.6, 0.7) = 22° and finally 05(0.3, 0.2) = 30°. Since the
velocity efficiency is maximal at I' = 4.7, we assume that above ag(l, & ), the transport velocity efficiency is negative all over
the range of throw numbers 0 <T" < 6.0, meaning a suppression of the current reversal.
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F1G.6: The transport velocity efficiency i as function of the inclination angle a calculated for '=4.7, &, = 0.7
and for two different friction coefficients p = 0.3 and 0.6.

IV. CONCLUSION

| have presented a model for the determination of transport velocity efficiency of granular materials on an inclined vibratory
conveyor subject to a circular driving mode. My calculations show the persistence, under certain conditions of the major
features of the transport found for a horizontal conveyor, in particular the current reversal and the optimal transport
condition. Based on this model, we could explain the origin of the different behavior of the transport velocity and the
underlying dynamics. The calculations show the existence of a new transport minimum due to the competition between the
gravitational and the driving forces. This minimum is strongly friction dependent. The calculations also show that by
increasing the inclination angle we obtain a suppression of the current reversal. This suppression does depend on the elastic
as well as the friction properties of the granular block. Finally, | hope that experimental studies will be performed in the
future to validate the model predictions.
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